Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Publication year range
1.
Drug Des Devel Ther ; 18: 1265-1275, 2024.
Article in English | MEDLINE | ID: mdl-38651136

ABSTRACT

Background: Treating inflammatory pain (IP) continues to pose clinical challenge, because of the lack of effective pharmacological interventions. Microglial polarization serves as pivotal determinant in IP progress. Obacunone (OB), a low-molecular-weight compound with a diverse array of biological functions, having reported as an activator of nuclear factor E2-related factor 2 (Nrf2), exhibits anti-inflammatory property. However, it remains uncertain whether OB can alleviate IP by facilitating the transition of microglial polarization from the M1 to M2 state through modulating Nrf2/ heme oxygenase-1 (HO-1) pathway. Methods: We induced an mice IP model by subcutaneously administering Complete Freund's Adjuvant (CFA) into the hind paw. Paw withdrawal latency (PWL) in seconds (s) and paw withdrawal frequency (PWF) were employed to evaluate the establishment of the IP model, while a caliper was used to measure the maximal dorsoventral thickness of the mice paw. Nerve injury was assessed by Hematoxylin-Eosin (HE) Staining. Western blot and got conducted for detection of M1/M2 microglial polarization markers, Nrf2 and HO-1 in spinal cord tissues respectively. Results: In comparison to the control cohort, PWF, M1 phenotype marker iNOS, CD86, paw thickness increased significantly within CFA cohort, while PWL, M2 phenotype marker Arg-1, interleukin-10 (IL-10) decreased in the CFA group. In comparison to model cohort, OB treatment decreased PWF, paw thickness, M1 phenotype marker iNOS, CD86 significantly, while PWL, M2 phenotype marker Arg-1, IL-10, Nrf2, HO-1 increased significantly. The morphological injuries of sciatic nerve in CFA mice were obviously improved by OB treatment. OB inhibited the release of M1-related IL-1ß, CXCL1 but promoted M2-related TGF-ß, IL-10 in serum in CFA mice. The intervention of the Nrf2 inhibitor ML385 mitigated analgesic effect of OB. Conclusion: We demonstrate that OB is able to attenuate inflammatory pain via promoting microglia polarization from M1 to M2 and enhancing Nrf2/HO-1 signal. OB treatment may be a potential alternative agent in the treatment of IP.


Subject(s)
Inflammation , Membrane Proteins , Microglia , NF-E2-Related Factor 2 , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Signal Transduction/drug effects , Microglia/drug effects , Microglia/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice, Inbred C57BL , Heme Oxygenase-1/metabolism , Pain/drug therapy , Pain/metabolism , Freund's Adjuvant , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
2.
Eur J Med Res ; 29(1): 169, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475920

ABSTRACT

Myocardial Infarction (MI) is major cause of heart failure, highlighting the critical need for effective therapeutic strategies to improve cardiac repair. This study investigated the cardioprotective effects of VX765-coated polyethyleneimine (PEI)/sodium alginate (AG) composite nanogels (AG/PEI-VX765 NGs) in a rat model of MI. Additionally, AG-VX765 NGs and PEI-VX765 nanospheres (NPs) were synthesized and tested to compare their efficacy. MI was caused in rats by ligating the left anterior descending branch of the coronary artery, and the rats were grouped and set as Sham, MI, MI + VX765, MI + AG-VX765NGs, MI + PEI-VX765NPs, and MI + AG/PEI-VX765NGs. Results demonstrate that AG/PEI-VX765NGs were non-toxic and exhibited a sustained release of VX765. In vivo, experiments demonstrated that all treatment groups significantly enhanced cardiac function, reduced infarct size, fibrosis, and apoptosis in rats with MI, with the MI + AG/PEI-VX765NGs group exhibiting the most favorable outcomes. Our findings indicate that AG/PEI-VX765NGs represent a promising therapeutic approach for MI treatment.


Subject(s)
Alginates , Myocardial Infarction , para-Aminobenzoates , Rats , Animals , Nanogels/therapeutic use , Alginates/therapeutic use , Dipeptides/therapeutic use
3.
Pharm Biol ; 61(1): 61-68, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36548192

ABSTRACT

CONTEXT: Andrographolide (Andr) is a bioactive Andr diterpenoid extracted from herbaceous Andrographis paniculata (Burm. F.) Wall. ex Nees (Acanthaceae). Andr can relieve cardiac dysfunction in mice by inhibiting the mitogen-activated protein kinases (MAPK) pathway. OBJECTIVE: This study investigates the efficacy and underlying mechanism of Andr on cardiac hypertrophy in mice. MATERIALS AND METHODS: Male C57 mice (20-25 g, 6-8 weeks) were divided into four groups (n = 10 mice/group) as sham group (sham operation), transverse aortic constriction (TAC) model group, TAC + Andr 100 mg/kg group and TAC + Andr 200 mg/kg group. Andr groups were given intragastric administration of Andr (100 and 200 mg/kg) once a day for 14 consecutive days. An in vitro hypertrophy model was established by adding 1 µM of Ang II to H9c2 cells for 48 h induction. RESULTS: In TAC-mice, Andr improved echocardiographic indices [reduced LVESD (30.4% or 37.1%) and LVEDD (24.8% or 26.4%), increased EF (22.9% or 42.6%) and FS (25.4% or 52.2%)], reduced BNP (11.5% or 23.6%) and Ang II levels (10.3% or 32.8%), attenuates cardiac fibrosis and reduces cardiac cell apoptosis in TAC mice. In vitro, Andr attenuated cardiomyocyte hypertrophy and decreased the protein expression of GRP78 (67.8%), GRP94 (47.6%), p-PERK (44.9%) and CHOP (66.8%) in Ang-II-induced H9c2 cells and reversed after endoplasmic reticulum (ER) stress agonist Tunicamycin (TN) treatment. DISCUSSION AND CONCLUSIONS: Andr was found to be an anti-hypertrophic regulator, which could attenuate cardiac hypertrophy by suppressing ER stress. It may be a new therapeutic drug for cardiac hypertrophy.


Subject(s)
Cardiomegaly , Diterpenes , Animals , Male , Mice , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Endoplasmic Reticulum Stress , Fibrosis , Mice, Inbred C57BL , Myocytes, Cardiac/pathology
4.
Sheng Li Xue Bao ; 73(6): 878-884, 2021 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-34961861

ABSTRACT

The aim of the present study was to investigate the protective effect of propofol on the experimental myocardial infarction in rats. The myocardial infarction model was established by ligating the anterior descending branch of left coronary artery in rats. Model rats were treated with propofol. Cardiac function was evaluated by echocardiography. Cardiac hemodynamic changes were detected by multiconductor biorecorder. Pathological changes in the infarcted myocardia were detected by HE staining. The expression levels of cardiac hypertrophy marker genes and fibrosis marker proteins were analyzed by real-time quantitative PCR and Western blot. The results showed that, compared with the sham surgery group, the model group exhibited larger infarct size (> 40%), impaired heart function, and significantly increased left ventricular end-diastolic pressure (LVEDP). Propofol reduced cardiac function impairment and decreased LVEDP in the model group. Propofol significantly reduced lung weight/body weight ratio, heart weight/body weight ratio, left ventricular weight/body weight ratio and left atrial weight/body weight ratio in the model group. Furthermore, after myocardial infarction, the administration of propofol significantly improved the diastolic strain rate, down-regulated the mRNA expression levels of myocardial hypertrophy markers, atrial natriuretic peptide and ß-myosin heavy chain, and reversed the up-regulation of matrix metalloproteinase 2 (MMP2), MMP9 and tissue inhibitor of metalloproteinase-2 (TIMP-2) induced by myocardial infarction. These results suggest propofol can reduce adverse ventricular remodeling, cardiac dysfunction, myocardial hypertrophy and fibrosis after myocardial infarction, and has protective effect against the experimental myocardial infarction induced by coronary artery ligation in rats.


Subject(s)
Cardiotonic Agents/pharmacology , Myocardial Infarction , Propofol , Animals , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Myocardial Infarction/drug therapy , Myocardium , Propofol/pharmacology , Rats , Tissue Inhibitor of Metalloproteinase-2/genetics , Ventricular Remodeling
5.
Cancer Biomark ; 19(4): 419-424, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28582846

ABSTRACT

BACKGROUND: Members of the SIRT family are a highly conserved family of NAD+-dependent enzymes, many of which (SIRT1-7) play an important role in tumor formation. Recently, several studies have suggested that SIRT4 not only regulates glutamine metabolism, but also serves as a tumor suppressor. There are no studies have assessed its clinical significance in endometrioid adenocarcinoma. METHODS: We investigated SIRT4 protein levels in endometrioid adenocarcinoma and its possible association with selected clinico-pathological parameters by immunohistochemical staining of a tissue microarray that included 65 endometrioid adenocarcinoma patients. RESULTS: SIRT4 protein levels in endometrioid adenocarcinoma were markedly lower than its non-neoplastic tissue counterpart (P< 0.001). Moreover, lower SIRT4 expression levels were observed in advanced AJCC stages of development (P= 0.002). CONCLUSIONS: Our results indicated that SIRT4 may be involved in the development of endometrioid adenocarcinoma and is a promising target for both the diagnosis and potential therapy of endometrioid adenocarcinoma.


Subject(s)
Carcinoma, Endometrioid/enzymology , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/enzymology , Endometrial Neoplasms/pathology , Mitochondrial Proteins/metabolism , Sirtuins/metabolism , Female , Humans , Neoplasm Staging
SELECTION OF CITATIONS
SEARCH DETAIL
...